
Guided Genetic Algorithm and its Application to

Radio Link Frequency Assignment Problems

T. L. Lau (tllau@essex.ac.uk)
Dept. of Computer Science, University of Essex, Wivenhoe Park, Colchester CO4
3SQ, UK

E. P. K. Tsang (edward@essex.ac.uk)
Dept. of Computer Science, University of Essex, Wivenhoe Park, Colchester CO4
3SQ, UK

Abstract. The Guided Genetic Algorithm (GGA) is a hybrid of Genetic Algo-
rithm and Guided Local Search, a meta-heuristic search algorithm. As the search
progresses, GGA modi�es both the �tness function and �tness template of candidate
solutions based on feedback from constraints. The �tness template is then used
to bias crossover and mutation. The Radio Link Frequency Assignment Problem
(RLFAP) is a class of problem that has practical relevance to both military and civil
applications. In this paper, we show how GGA can be applied to the RLFAP. We
focus on an abstraction of a real life military application that involves the assigning
of frequencies to radio links. GGA was tested on a set of eleven benchmark problems
provided by the French military. This set of problems has been studied intensively
by a number of prominent groups in Europe. It covers a variety of needs in military
applications, including the satisfaction of constraints, �nding optimal solutions that
satisfy all the constraints and optimization of some objective functions whenever
no solution exist ("partial constraint satisfaction"). Not only do these benchmark
problems vary in problem nature, they are reasonably large for military applications
(up to 916 variables, and up to 5548 constraints). This makes them a serious chal-
lenge to the generality, reliability as well as eÆciency of algorithms. We show in this
paper that GGA is capable of producing excellent results reliably in the whole set
of benchmark problems.

Keywords: Genetic Algorithm, Constraint Satisfaction Optimization Problem, Par-
tial Constraint Satisfaction Problem

1. Introduction

A �nite Constraint Satisfaction Problem (CSP) can be described as a
problem with a �nite set of variables, where each variable is associ-
ated with a �nite domain. Relationships between variables constrain
the possible instantiations they can take at the same time [37, 15].
To solve a CSP, one must �nd the solution tuple that instantiate
variables with values of their respective domains, and that these in-
stantiations do not violate any of the constraints. Our area of research
is in Constraint Satisfaction Optimization Problem (CSOP) and Partial
Constraint Satisfaction Problem (PCSP), two variations of the CSP.

c
 2000 Kluwer Academic Publishers. Printed in the Netherlands.

kluwer~1.tex; 19/07/2000; 19:26; p.1

2 T. L. Lau and E. P. K. Tsang

In the realms of CSP, the instantiation of a variable with a value
from its domain is called a label. A simultaneous instantiation of a set of
variables is called a compound label, which is a set of labels. A complete

compound label is one that assigns values, from the respective domains,
to all the variables in the CSP.

A CSOP is a CSP with an objective function f that maps every
complete compound label to a numerical value. The goal is to �nd a
complete compound label S such that f(S) gives an optimal value, and
that no constraint is violated. A PCSP is similar to a CSOP except
that the complete compound label may have variable instantiations
that violate some of its constraints. Violation is unavoidable when the
constraints are so tight that a satis�able solution does not exist, or
cannot be found [16, 37]. Deciding which constraint to violate is in
u-
enced by its cost and type. Hard constraints are types of constraints
that must not be violated, whereas soft constraints may. The sum cost
of all violated constraints is re
ected in the objective function, further
to other optimization criteria.

Guided Local Search (GLS) is a meta-heuristic algorithm that sits
on top of hill-climbing algorithms to improve their eÆciency and ef-
fectiveness. It has been applied to a number of problems and achieved
outstanding results [21, 28, 38, 43, 41, 40, 44]. The objective of this re-
search is to demonstrate that not only can GLS sit on top of hill-climing
algorithms, it can sit on top of GAs too. By sitting GLS on top of a GA,
we get an algorithm which contains the epistasis in GA (through the
use of GLS) and improves the robustness of GLS (contribution of GA).
In this paper, we show how such a hybrid algorithm can be applied to
the radio link frequency assignment problem. We claim that this work
contributes to both meta-heuristic search and GA research.

1.1. The Radio Link Frequency Assignment Problem

1.1.1. Background

The Radio Link Frequency Assignment Problem (RLFAP) is a general
problem that has relevance to both military and civil applications.
RLFAP is NP-hard and is a variation on the T-graph colouring problem
introduced in [18]. In this paper, we focus on the military-motivated
frequency assignment problem tackled by the EUCLID CALMA (Com-
binatorial Algorithms for Military Applications) consortium. This was
a group of six research bodies in Europe that was formed to investigate
the use of combinatorial optimization techniques (including AI and
OR techniques) to aid military decisions (the project ended in late
1995). It de�ned a class of RLFAPs that capture the needs in real life
military applications. A set of benchmark problems was used to ob-

kluwer~1.tex; 19/07/2000; 19:26; p.2

Guided Genetic Algorithm 3

serve the e�ectiveness of di�erent approaches. This set comprises eleven
RLFAP instances with various optimization criteria. It was made pub-
licly available through the e�orts of the French Centre d'Electronique
l'Armament. 1

1.1.2. Types of Instances

Each instance in the CALMA benchmark has a set of �les that de-
scribe its variables, their domains, the constraints, and the objective.
In addition, we are also given information on the respective optimiza-
tion requirements based on the solubility of the problem. Optimization
criteria describe the interpretation of variable instantiations and the
means of measuring their desirability; thus shaping the objective func-
tion of our search routine, whereas the solubility of the problem states
if a solution can be found under the condition that no constraint was
violated. If an instance can be solved without constraint violation, then
its optimality is de�ned as either O1 or O2, otherwise it is O3 (see
below). For an insoluble instance, we use the violation cost of each
constraint to solve the instance as a PCSP. In this paper, regardless of
the problem's solubility, all instances in RLFAP are solved as PCSP
since a CSOP problem can be mapped into a PCSP by giving each
constraint a violation cost. This violation cost is the same value for all
constraints in the instance.

O1 - optimal solution is one with the fewest number of di�erent values
in its variables.

O2 - optimal solution is one where the largest global assigned value is
minimal.

O3 - if a the problem cannot be solved without violating constraints,
�nd a solution that minimizes the objective function as follows:

a1 � nc1 + a2 � nc2 + a3 � nc3 + a4 � nc4 +

+ b1 � nv1 + b2 � nv2 + b3 � nv3 + b4 � nv4 (1)

Where nci is the number of violated constraints of priority i, nvi
is the number of modi�ed variables with mobility i. Mobility for

1 The RLFAP benchmark problems used in the CALMA project have up to 1,000
variables and 6,000 constraints. They are available at the Centre d'Electronique
l'Armament (France), via ftp at ftp.cert.fr/pub/bourret. Civil RLFAPs are often
bigger in size (up to 10,000 variables and 2.5 million constraints). Some of the
military requirements may not apply to civil RLFAPs and vise versa. Therefore
benchmark results in one set of problems may not be generalized to the other. For
GA applications to civil RLFAPs, readers may consult [6, 7, 5, 9, 19, 10, 33].

kluwer~1.tex; 19/07/2000; 19:26; p.3

4 T. L. Lau and E. P. K. Tsang

a radio link states the cost for changing the frequency from its
assigned default. The values of the weights ai and bi are given if
necessary.

All constraints in the CALMA benchmark are binary; that is, each
constraint operates on the values in two variables. These constraints
test the absolute di�erence of two variables in a candidate solution,
where this logical test can belong to either of the two following classes:

C1 - the absolute di�erence must be lesser than a constant.

C2 - the absolute di�erence must be equal to a constant.

Table I lists the instances, their characteristics and its objective.
From this table, we can observe that the RLFAP contains instances
that are varied in both the optimization and constraint criteria. Fur-
ther, the number of variables, their domain sizes, and the number of
constraints on these variables make the RLFAP a non-trivial problem
set for any algorithm. The RLFAP would not only test the quality
and robustness of an algorithm, but also its
exibility to adapt to the
di�erent optimization and constraint criteria of each instance.

Table I. Characteristics of RLFAP instances.

Instance No. of No. of Soluble Minimize Type

variables constraints

scen01 916 5548 Yes Number of di�erent values used O1

scen02 200 1235 Yes Number of di�erent values used O1

scen03 400 2760 Yes Number of di�erent values used O1

scen04 680 3968 Yes Number of di�erent values used O1

scen05 400 2598 Yes Number of di�erent values used O1

scen06 200 1322 No The maximum value used O2

scen07 400 2865 No Weighted constraint violations O3

scen08 916 2744 No Weighted constraint violations O3

scen09 680 4103 No Weighted constraint violations
and mobility costs

O3

scen10 680 4103 No Weighted constraint violations
and mobility costs

O3

scen11 680 4103 Yes Number of di�erent values used O1

kluwer~1.tex; 19/07/2000; 19:26; p.4

Guided Genetic Algorithm 5

2. The RLFAP in PCSP Expression

A PCSP is de�ned as a quadruple of fZ;D;C; fg where Z is a �nite set
of variables. With respect to Z,D is a function that maps every variable
to a set of values, which is called a domain. C is a �nite set of constraints
that a�ect a subset of the variables, and each constraint has a cost for
its violation. The objective function f returns a magnitude based on
the instantiation of the variables and the satisfaction of constraints. In
the RLFAP, each instance has a set of �les that conveniently describe
the respective Z, D and C sets, and the optimization objective f .

2.1. Variables and Domains

For any of the RLFAP instance with m variables, let qj be a variable
in Z representing one radio link. For each variable qj in Z, there is one
associated domain mapped by the functionD, denoted by D(qj), which
contains a set of n values, each value representing a valid frequency that
can be assigned to the variable.

Z = fq1; q2; : : : ; qmg (2)

where 8qj 2 Z : D(qj) = ffreq1; freq2; : : : ; freqng (3)

2.2. Constraints

The constraint set C consists of n elements, representing n constraints
in the instance. Each element in C consist of the constraint ci and its
cost costi (Eq. 4). In instances of type O3 (see section 1.1.2), costi
holds an integer denoting the cost incurred if constraint ci is violated.
From Eq. 1, we see that in the RLFAP, each constraint has an assigned
priority that is related to a user de�ned cost. We used this priority to
derive the costi for each constraint ci.

As discussed in section 1.1.2, there are two types of binary con-
straints in the RLFAP; C1 and C2 which we formulate into Eq. 5. In
that equation, qa and qb are two variables from a candidate solution,
and z is a constant. Eq. 6 states that constraint ci returns a binary
value that is 1 for a violation and 0 otherwise.

C = f< c1; cost1 >;< c2; cost2 >; : : : ; < cn; costn >g (4)

8ci 2 C :

�
ci � jqa � qbj < z; if ci is type C1
ci � jqa � qbj = z; if ci is type C2

(5)

where ci =

�
1; constraint is violated
0; otherwise

(6)

kluwer~1.tex; 19/07/2000; 19:26; p.5

6 T. L. Lau and E. P. K. Tsang

2.3. Objective Function

The respective objective function f of the instances in RLFAP are
stated in Table I. The objective functions are also explained in section
1.1.2.

3. Algorithms

CSPs and CSOPs are generally NP-hard [37] and although heuristics
have been found useful in solving them, most systematic search al-
gorithms are deterministic and constructive [27], and would thereby
be limited by the combinatorial explosion problem. Systematic meth-
ods include search and inference techniques. These search methods are
complete, so they are able to guarantee a solution, or to prove that one
does not exist. Thus systematic techniques will, if necessary, search the
entire problem space for the solution [22].

The combinatorial explosion is an obstacle faced by systematic search
methods for solving realistic CSPs, and in looking for optimal and or
near-optimal solutions in CSOPs. In optimization, to ensure that the
solution found is the optimal, systematic search algorithms in the worst
case would need to exhaust the entire problem space to establish that
fact. Branch and bound methods help to prune o� parts of the space.
Their e�ectiveness depends on their ability to �nd good bounds, which
is the subject of much research, e.g. see [32, 39, 3].

Stochastic search methods are normally incomplete. They are not
able to guarantee that a solution can be found, and neither can they
prove that a solution does not exist. They forgo completeness for eÆ-
ciency. Often, stochastic search methods can be faster in solving CSOPs
than systematic methods [14]. Many publications such as [29, 31, 23]
demonstrated on several large problems that systematic search algo-
rithms fail to solve, but stochastic alternatives eÆciently conquer.

3.1. Genetic Algorithms

Genetic Algorithms (GAs) are stochastic search algorithms that borrow
some concepts from nature [8, 17, 20]. GA maintains a population pool

 of candidate solutions called strings or chromosomes. Each chromo-
some
p is a collection of � building blocks known as genes, which are
instantiated with values from a �nite domain. Let
p;q denote the value
of gene q in chromosome p in the population
.

Associated with each chromosome is a �tness value which is deter-
mined by a user de�ned function. The function returns a magnitude

kluwer~1.tex; 19/07/2000; 19:26; p.6

Guided Genetic Algorithm 7

Generate initial
population

Start

Mutation
operator

Cross-over
operator

population
Re-assess

Criteria
met?

Control Flow

Data Flow

Reproduction
operator

Mating pool

End

Population
pool

Offspring
pool

yes

no

Figure 1. A canonical Genetic Algorithm

that is proportional to the candidate solution's suitably and/or opti-
mality. Fig. 1 shows the control and data
ow of a canonical GA. At
the start of the algorithm, an initial population is generated. Initial
members of the population may be randomly generated, or generated
according to some rules. The reproduction operator selects chromo-
somes from the population to be parents for a new chromosome and
enters them into the mating pool. Selection of a chromosome for par-
enthood can range from a totally random process to one that is biased
by the chromosome's �tness.

kluwer~1.tex; 19/07/2000; 19:26; p.7

8 T. L. Lau and E. P. K. Tsang

The crossover operator oversees the mating process of two chromo-
somes. Two parent chromosomes are selected from the mating pool
randomly and the crossover rate, which is a real number between zero
and one, determines the probability of producing a new chromosome
from the parents. If the mating was performed, a child chromosome is
created which inherits complementing genetic material from its parents.
The crossover operator decides what genetic material from each parent
is passed onto the child chromosome. The new chromosome produced
is entered into the o�spring pool.

The mutation operator takes each chromosome in the o�spring pool
and randomly changes part of its genetic make-up, i.e. it's content. The
probability of mutation occurring on any chromosome is determined by
the user speci�ed mutation rate. Chromosomes, mutated or otherwise,
are returned to the o�spring pool after the mutation process.

Thus each new generation of chromosomes are formed by the ac-
tion of genetic operators (reproduction, crossover and mutation) on
the older population. Finally, the members of the population pool
are compared with those of the o�spring pool. The chromosomes are
compared via their �tness value to derive a new population, where the
weaker chromosomes may be eliminated. In particular, weaker members
in the population pool are replaced by the �tter child chromosomes
from the o�spring pool. The heuristic for assessing the survival of each
chromosome into the next generation is called the replacement strategy.

The process of reproduction, crossover mutation and formation of
a new population completes one generation cycle. A GA is left to
progress through generations, until certain criteria (such as a �xed
number of generations, or a time limit) are met. GAs were initially
used for machine learning systems, but it was soon realised that GAs
have great potential in function optimization [1, 17, 8].

3.2. Motivation for Research

A basic assumption of the canonical GA is that genes are independent
of each other, so that the value taken by one gene will not in
uence the
instantiation of any other gene in the same chromosome. Constrainted
problems are highly epistatic in nature. Epistasis is the interaction
between di�erent genes in a chromosome. A candidate solution to a
typical constrainted problem is often represented as a chromosome,
where each gene in the chromosome describes a variable in the prob-
lem. Constraints in
uence both the values that sets of genes can take
simultaneously and the overall �tness of that chromosome. Goldberg
suggested high epistasis as an explanation to GAs failure in certain

kluwer~1.tex; 19/07/2000; 19:26; p.8

Guided Genetic Algorithm 9

tasks [17]. To contain epistasis, many have developed specialized GAs
for handling constraints, e.g. see [2, 11, 12, 13, 6, 7, 5, 30, 35, 47, 48, 46].

One way to contain the epistasis problem is to design a represen-
tation that will not generate illegal solutions through crossover. This
is possible for some problems, but it may not be easy to �nd such
representations for others. Epistasis has plagued GAs since its inception
and the successful suppression of its e�ects would not only be signi�cant
to the current goal (that of using GAs for constrainted problems), but
also to the �eld of GAs. This will involve fundamental changes to the
canonical GA architecture.

By maintaining a collection of solutions in parallel, and through
the explorative mode (through the use of its crossover operator) of
Genetic Algorithms, they are able to mine the search space in several
locations at the same time. This makes Genetic Algorithms less local
than compared to most local search techniques, giving them an edge
of robustness. Robustness is de�ned as consistency in �nding optimal
(or near optimal) solutions, and the consistency in the quality of these
solutions. This is a much desired quality that would boost con�dence
in the use of Arti�cial Intelligence in the real world. Since it would be
diÆcult to entrust a mission critical problem to a method that gives
solutions with a high degree of variance.

3.3. Guided Genetic Algorithm

3.3.1. Background

Among our earlier work on CSOPs, we looked at the Processor Con-
�guration Problem (PCP) [4, 46]. Brie
y, the PCP is a real life CSOP
where the task is to link up a �nite set of processors into a network,
whilst minimizing the maximum distance between these processors.
Since each processor has a limited number of communication channels,
a carefully planned layout will help reduce the overhead for message
switching.

We developed a GA called the Lower Power Genetic Algorithm
(LPGA) [25, 26] speci�cally for solving the PCP. LPGA is a two-phase
GA approach where in the �rst phase, we run LPGA until a local
optimum has been determined. The best chromosome from this run is
analysed and used to construct a �tness template for use in the next
phase. This �tness template is a map that de�nes undesirable genes,
so in
uencing LPGA to change their contents. By insisting that crucial
genes do not change, the evolution in the second phase shifts focus onto
other parts of the string; resulting in a more compact search space.

LPGA found improved solutions than results published so far in the
PCP. It's success could be attributed to the use of an e�ective data

kluwer~1.tex; 19/07/2000; 19:26; p.9

10 T. L. Lau and E. P. K. Tsang

representation and more importantly, the presence of an application
speci�c penalty algorithm. In our e�ort to generalize LPGA, we sought
to develop a GA that utilizes a dynamic �tness template constructed
by a general penalty algorithm. The Guided Genetic Algorithm (GGA)
reported in this paper was the result of this e�ort.

3.3.2. Overview of GGA

In our journey to develop GGA, we have taken liberty with some of the
traditional GA concepts (such as the addition of a penalty operator,
and an alternate interpretation of the mutation rate). These will be
introduced as we progress through the rest of this paper. Comparing
GGA in Fig. 2 against the canonical GA in Fig. 1, we see the addition
of data collection called the �tness templates, a penalty operator (see
3.3.3) and a condition to activate that operator. Also added to Fig. 2
are the interactions between the penalty operator and the data space
in GGA. Appended at the end of this section (section 3) are two tables
(Tables II and III), summarizing for the readers' convenience, the terms
and technology introduced henceforth.

The control
ow of the GGA is very much similar to that of the
canonical GA, described in section 3.1. After the start of the algorithm,
an initial population is created. A new generation of chromosomes are
derived from the parent chromosomes through the actions of the re-
production, crossover and mutation operators. Both the crossover and
mutation operators (or any operator thereof) may be adapted to use the
information provided by the penalty operator, via the �tness template

of individual chromosome (explained in section 3.3.4). Memberships
to the population pool are re-assessed by comparing the �tness of the
chromosomes from the population and o�spring pool. For the RLFAP,
GGA was con�gured to use an elitist replacement strategy. Under this
strategy, chromosomes from both the population and o�spring pool are
ranked by their �tness. The �ttest n chromosomes in the ranking are
used to form the next generation's population pool. In GGA, n is set
to the size of the population pool.

New elements of the GGA come into play at this point. The new
population is surveyed for the possibility of being trapped in a lo-
cal optimum. We can observe that in hill climbing, when a search is
trapped in a local optimum, it repeatedly returns the same solution
since the neighbouring states does not o�er any improvement. If the
population is indeed trapped in a local optimum, the penalty operator
is called. In GGA, we conclude that the best chromosome is trapped
in a local optimum if its �tness does not improve over a given number
of iterations. This number is a parameter to GGA. When the penalty
operator is called, it looks for undesirable features in the chromosomes

kluwer~1.tex; 19/07/2000; 19:26; p.10

Guided Genetic Algorithm 11

Generate initial
population

Start

Mutation
operator

Cross-over
operator

population
Re-assess

Local
optimum?

Criteria
met?

End

operator
Penalty

Control Flow

Data Flow

Reproduction
operatorMating pool

Population
pool

Offspring
pool

Fitness
templates

no

no

yes

yes

Figure 2. The Guided Genetic Algorithm

and update the �tness template (or �tness templates), so that mutation
and crossover operators might fade out these features in the coming
generations.

kluwer~1.tex; 19/07/2000; 19:26; p.11

12 T. L. Lau and E. P. K. Tsang

3.3.3. Penalty Operator

The use of a �tness template in LPGA (generated by a specialized
penalty algorithm) was the motivating force in the development of
GGA. In the quest for a general penalty algorithm, we looked for
functional similarities to LPGA and more importantly, that the nature
of the penalty algorithm will not be obstructive to the operation of
a canonical GA. The Guided Local Search (GLS) [40] developed by
our research group is an intelligent search scheme for combinatorial
optimization problems. It meets our criteria and further, its conceptual
simplicity and proven e�ectiveness in a range of well known problems
was an added attraction [38, 42, 41, 43]. In GGA, we adapted GLS in
the form of the penalty operator.

Solutions are characterized by a set of solution features �, where a
solution feature �i can be any property exhibited by the solution (Eq.
7). This property must be non-trivial, such that it does not appear in
all candidate solutions. Research on GLS has indicated that, in many
cases, feature de�nition is not diÆcult, since the domain often suggests
features that one could use. The application in this paper supports this
point. 2

� = f�1; �2; : : : ; �mg (7)

In GGA, a feature �i is limited to variable assignments (in GLS,
it is more general); a feature in a chromosome may be exhibited by
the simultaneous assignments of a group of genes. Thus the feature
�i de�nes a set of positions in the chromosome representation, and is
represented by an indicator function �i in Eq. 8, which test the existence
of that feature. For each feature �i, there is a cost �i which rates that
feature's presence in a solution in degrees of undesirability. Indicator
functions and costs are application dependent, and so they are de�ned
by the user.

�i(
p) =

�
1; solution
p exhibits feature �i
0; otherwise

(8)

The penalty counter �i is a variable maintained by GGA that gives
the degree of extent that the feature �i is penalized as the search is
progressing; the counter is initialized to zero at the beginning of the

2 Features can often be de�ned from the objective function. For example, in the
travelling salesman problem, whether one goes immediately from city x to city y

can be de�ned as a feature[44]. This feature is only exhibited by tours that have
cities x and y adjacent to each other. The cost of this feature is the distance to be
travelled from x to y. We have been able to �nd features in other problems without
diÆculty. for example, see [24, 38, 40, 41, 44].

kluwer~1.tex; 19/07/2000; 19:26; p.12

Guided Genetic Algorithm 13

search and its value can only increase. A new �tness function called the
augmented cost function g (Eq. 9) is used in place of function f , so that
changes in penalty counters will a�ect the survival of chromosomes. The
regularization parameter � (adopted from GLS) measures the impact
penalties have, with respect to function f .

g(
p) = f(
p) + � �
X

(�i � �i(
p)) (9)

In GGA, if the �tness of the best chromosome remains unchanged
for a speci�c number of generations, we conclude that it is trapped in
a local optimum. The penalty operator comes in to analyze the best
chromosome
p of the population for features to penalize. Penalties are
used in GGA to guide the search to escape local optima. To evaluate
the utility of penalizing individual features exhibited by a candidate
solution, GGA (following GLS) takes into consideration the cost as well
as the penalty counter (Eq. 10). Thus, for all features �i in the �ttest
chromosome
p that maximizes the function util(
p; �i) (Eq. 10), the
related penalty counter �i is incremented by one. It is hoped that by
penalizing undesirable features, we can escape from the local optimum
and suppress the occurrence of these features in the coming generations.

util(
p; �i) = �i(s) �
�i

1 + �i
(10)

3.3.4. Fitness Template

Central to the theme in GGA is the �tness templates. Besides the �tness
function, the �tness templates o�er an added channel of communica-
tion between the penalty operator, and the mutation and crossover
operators. The �tness template is a map that de�nes which genes in
a chromosome are more susceptible to be changed during crossover or
mutation.

In GGA, each chromosome
p in the population is associated with
exactly one �tness template Æp. Each �tness template is made up of
smaller units known as weights Æp;q, each of which corresponds to a gene

p;q. A weight Æp;q is a positive integer. The \heavier" a gene appears
(compared to its comrades), the greater are its chances of having its
content altered. Therefore in the case of mutation, the weight of a
gene is proportional to the probability that mutation may occur on it,
relative to the weights of other genes in the same chromosome. This is
especially useful when the number of genes in a chromosome is large,
where random selection of genes might not be helpful. More details
on the role of the �tness template with the mutation and crossover
operator will be given in their respective sections.

kluwer~1.tex; 19/07/2000; 19:26; p.13

14 T. L. Lau and E. P. K. Tsang

Weights in the �tness template for each chromosome are computed
when the chromosome was �rst created, and after the penalty operator
has penalized feature(s). Computation of weights are needed after these
events because the content of either the chromosomes or the penalty
counters have changed.

For a chromosome, the distribution process (Fig. 3) starts by initial-
izing all weights to zero. It will check the chromosome for the presence
of any features from the set �. For a feature �i that exist in the chro-
mosome3, all the weights related to the gene positions de�ned by �i is
incremented with the value in its penalty counter �i.

FUNCTION DistributePenalty(chromosome
p)
f

FOR EACH weight Æp;q RELATED TO chromosome
p
f

Æp;q 0
g

FOR EACH solution feature �i IN feature set �
f

IF �i(
p) = 1 THEN
f

FOR EACH gene position q de�ned by �i
f

Æp;q Æp;q + �i
g

g
g

g

Figure 3. Algorithm for the Distribution of Penalty

3.3.5. Cross-over Operator

In GGA, the action of mating two individuals from the population
produces a new child. Each parent contributes a set of genes which the
child inherits. In GA, the process of choosing parents, deciding their
respective contribution rights of genetic material, and the forging of
a child chromosome from these material is the responsibility of the
crossover operator. The probability of crossover occurring is controlled

3 Feature �i is present when its indicator function �i returns a one.

kluwer~1.tex; 19/07/2000; 19:26; p.14

Guided Genetic Algorithm 15

by the parameter crossover rate. By assembling a new chromosome
that contains parts of two parent chromosomes, it may introduce to
the population a new point in the search space. And since the parents
chosen for mating are selected with bias to their �tness, we hope that
the child chromosome may be �tter.

Cross-over operators di�er primarily from each other in the way
that they choose the genes from the parents to form the child. In the
canonical GA, one of the simplest form of crossover is the one-point

crossover [17, 8]. In Fig. 4, we have two parent chromosomes whose
genes are binary encoded. One random point along the length of the
chromosomes are selected as the crossover point. Each parent donates
one di�erent part of their chromosome (de�ned by the crossover point)
to create the child chromosome.

1 0 1 1 0 0 1 1 0 0

0 1 0 1 1 0 0 1 0 1

1 0 1 1 0 0 0 1 0 1

Gene

Parent 1

Parent 2

Cross-over point

Child

Figure 4. An example of the One-point Cross-over Operator in action

In GGA, we have adapted the crossover operator to take advantage
of the �tness template. Two chromosomes
p and
p0 are selected as
parents to produce the child
p00 . Each gene in chromosome
p competes
against the corresponding gene in
p0 for a place in the child. This
competition is a weighted random selection, in
uenced by the weights
Æp;q and Æp0;q of the respective genes; thus the \lighter" gene will have
a greater chance to propagate its information to the child. Note that
the child does not inherit the weights from its respective parent, since
the child may represent a di�erent solution from its parents, and thus
requiring the penalty operator to re-assess it. The algorithm of GGA's
crossover operator is shown in Fig. 5. Fig. 6 shows its e�ect when
applied to the situation for one-point crossover in Fig. 4.

The operator starts by receiving two parents
p and
p0 from the
mating pool. For each set of corresponding genes
p;q and
p0;q in the
parents, it computes the sum of their weights. The selection of the gene
is randomly biased, such that the probability for either
p;q or
p0;q

kluwer~1.tex; 19/07/2000; 19:26; p.15

16 T. L. Lau and E. P. K. Tsang

to have its gene passed onto their child is

p0;q

sum and
p;q
sum respectively;

giving the advantage to a \lighter" gene, which we wish the child
p00;q

to inherit. This gene selection process is repeated for all genes in the
parents. When a child chromosome is complete, its �tness and weights
are computed.

FUNCTION CrossOver(parent chromosomes
p and
p0)
f

FOR EACH gene position q IN the chromosome
f

sum Æp;q + Æp0;q

point random integer from f0; : : : ; sum� 1g

IF point < Æp;q THEN
f

gene
p0;q

g
ELSE
f

gene
p;q
g

g

RETURN gene as
p00;q for the o�spring
g

Figure 5. Algorithm of the GGA Cross-over Operator

3.3.6. Mutation Operator

Mutation produces variations in the population through altering the
information that genes carry. The mutation rate states the probability
that mutation may occur on a chromosome. In GGA, the mutation rate
is de�ned as a fraction of the size of each chromosome; the number of
genes in a chromosome to mutate is the product of the mutation rate
and the size of that chromosome.

In GGA, mutation (Fig. 7) acts on every child chromosome
p00

produced by the crossover operator. For each chromosome, a number
of genes are chosen (as above, decided by the mutation rate) to be mod-
i�ed. A gene
p00;q is selected using the roulette wheel selection method.
In this selection method, the probability for each gene to be picked

kluwer~1.tex; 19/07/2000; 19:26; p.16

Guided Genetic Algorithm 17

GeneWeight

0 1 1 1 1 0 1 1 0 0

5 2 3 40 1 2 1 3 3

002 4 4 2 23 0 3

0 1 0 1 1 0 0 1 0 1

1 0 1 1 0 0 1 1 0 0

Parent 2

Parent 1

Child

Figure 6. An example of the GGA Cross-over Operator in action (Weights for the
child is calculated afresh, not inherited)

is directly proportional to its weight. Thus a gene with a \heavier"
weight (and therefore less desirable) compared to others in the chro-
mosome, will have a greater chance of being selected. Appended below
is a description of our implementation of the roulette wheel selection
method.

Given the chromosome
p00 , we compute the sum of all the weights
in the �tness template associated to this chromosome as sum =P�

q=1 Æp00;q. The probability that a gene
p00;q is selected is propor-

tional to its weight over sum, i.e. P (
p00;q) =
Æp00;q

sum .

The next step for a selected gene
p00;q is to seek an appropriate
value for replacement. This could be totally random or in GGA's case,
a value that will derive the best �tness (the biggest improvement) for
the chromosome. In our algorithm, we have the variables best and list.
The variable best holds the best �tness value, while list contains a list
of values that will allow the chromosome to arrive at the �tness value
in best. We step through all the values xj in the domain D(q) relevant
to the gene
p00;q. If xj produces a new �tness z greater4 than best, best
is set to z and list is emptied. However, if the z is equal to best, the
value xj is added to the list. When all values in the domain have been
exhausted, we randomly instantiate
p00;q with a value from list. Since
at this point, list should contain all possible values that will give the
chromosome
p00 the biggest improvement.

4 Since RLFAP is a minimization problem, we would want the greatest descent.

kluwer~1.tex; 19/07/2000; 19:26; p.17

18 T. L. Lau and E. P. K. Tsang

FUNCTION Mutation(chromosome
p00)
f

i 0

WHILE i < mutation rate � � (length of chromosome)
f

q RouletteWheel(
p00)
best g(
p00)
list
p00;q

FOR EACH value xj IN domain D(q)
f

p00;q xj
z g(
p00)

IF z � best THEN
f

IF z > best THEN
f

best z
list fg

g

list list+ xj
g

g

p00;q random value in list
i i+ 1

g

RETURN the mutated chromosome
p00

g

Figure 7. Algorithm of the GGA Mutation Operator

kluwer~1.tex; 19/07/2000; 19:26; p.18

Guided Genetic Algorithm 19

Updating of a gene's weight takes place after it's value has changed,
where the weight associated with it is reduced by one unit 5 so that
the probability of the same gene getting selected by the roulette wheel
selector is reduced.

Gene mutation is repeated until the stopping criteria is met. As
stated before, we stop mutating when the number of genes changed
have reached a value that is the product of the mutation rate and the
chromosome's length.

4. Preparing GGA to solve RLFAP

In section 2, we expressed the RLFAP as a formal PCSP. In this section,
we discuss the steps needed to adapt those de�nitions into a form that
GGA can use.

The feature set � is a union of the feature set of constraints �cst and
the set of mobility of radio links �mbt (Eq. 11). Constraint ci de�ned
in Eq. 5 is recast as a feature in the set �cst (Eq. 12), where a one is
returned if the constraint cannot be satis�ed, and zero otherwise. The
value of cost �costi to each constraint ci depends on the nature of the
instance. If the instance is soluble, then all �csti are set to a large value;
say 10000, to signify that the constraint must not be broken (i.e. hard
constraints). For insoluble instances, �csti is set to the weights given for
its priority class (see section 1.1.2). Similar to soluble instances, hard
constraints in insoluble instances will have their �csti set to a large
value. The set �cst has n features, where n is the number of constraints
in the instance.

For the O3 objective type of instances, we need to minimize the
mobility cost of our candidate solution, in addition to minimizing con-
straints violation costs. The set of mobility cost de�nes our next feature
set, �mbt (Eq. 13). For each variable in these instances, there is a
mobility cost �mbti and a default assigned frequency defaulti. If in
our candidate solution, a variable has been assigned a value di�erent
from its default defaulti, then a one is returned and zero otherwise.
The mobility cost �mbti is set to the weights given for its priority class
(again see section 1.1.2). There are radio links whose frequency should
never change, and the mobility cost for these have been set to a large
value. The feature set �mbt de�nes n features, where n is the number
of variables in the instance.

5 Since a weight is a positive integer, a weight will only be decremented if it is
greater than zero. By design, the same variable is allowed to mutate more than once
because after x is mutated, mutation of other variables may result in x's current
value being locally suboptimal.

kluwer~1.tex; 19/07/2000; 19:26; p.19

20 T. L. Lau and E. P. K. Tsang

Table II. Components of GGA

Algorithms Purpose

Cross-over operator Uses the �tness templates of two parent chro-
mosomes to decide each parent's contribution
of genetic material towards creating a child
chromosome.

Mutation operator The �tness template of a chromosome is used
to guide in the alteration of the chromosome's
genetic content.

Penalty operator This operator detects and selects undesirable
solution features in a chromosome to penal-
ize. Penalization involves incrementing penalty
counters of the associated features.

Local optimum detector Detects if the search is trapped in a local op-
timum. If it is, the penalty operator is called.

Distribute Penalty If a solution feature is present in a chromosome,
the penalty counter associated with this feature
is added onto the weights of the genes that are
constituents of this feature.

Data structures Purpose

Weight Æ Each gene has one weight. The weight is a
measure of undesirability of the gene's cur-
rent instantiation, compared to the rest of the
chromosome.

Fitness template A �tness template is a collection of weights.
Each chromosome has one �tness template.

Solution feature � Solution features are domain speci�c and user
de�ned. A feature is exhibited by a set of vari-
able assignments that describes a non-trivial
property of a problem.

Penalty counter � Each feature has one penalty counter. A
penalty counter keeps count of the number
of times its related solution feature has been
penalized since the start of the search.

kluwer~1.tex; 19/07/2000; 19:26; p.20

Guided Genetic Algorithm 21

Table III. Inputs and Parameters to GGA

Inputs/Parameters Purpose

Solution feature � See Table II

Cost � Each solution feature has a cost to rate its
undesirability of presence.

Indicator function � Each solution feature has a user de�ned indica-
tor function that tests for the feature's presence
in a chromosome.

Objective function f A function that maps each solution to a numer-
ical value.

Regularization parameter � A parameter that determines the proportion
of contribution that penalties have in an aug-
mented �tness function.

Augmented �tness function g A function that is the sum of the objective
function f on a chromosome and the penalties
of features that exist in it. This is the func-
tion that GGA uses to compute �tness for each
chromosome.

Mutation rate A fraction that de�nes the number of genes in
the chromosome to mutate.

Cross-over rate The probability that crossover will occur be-
tween two chromosomes.

� = f�cst; �mbtg (11)

8�i 2 �cst : �csti(
p) �

8<
:
1; if C1 and j
p;a �
p;bj � zi
1; if C2 and j
p;a �
p;bj 6= zi
0; otherwise

(12)

8�i 2 �mbt : �mbti(
p) �

�
1; if
p;i 6= defaulti
0; otherwise

(13)

For all instances in the RLFAP, we seek to minimize the function
g (Eq. 14). In g, the function f depends on the objective type of the
instance (Eq. 15). The cost �i and �i both refers to the uni�ed feature
set of �. They will associate with �csti and �csti , or �mbti and �mbti where
applicable. Thus the value n + c in Eq. 14 is the sum of the number
of features in �mbt (which de�nes n features, where n is the number of

kluwer~1.tex; 19/07/2000; 19:26; p.21

22 T. L. Lau and E. P. K. Tsang

variables) and �cst (which de�nes c features, where c is the number of
constraints).

g(
p) = f(
p) + � �
n+cX
i=1

(�i � �i(
p)) (14)

f(
p) =

8>><
>>:

if O1; number of di�erent values used in
p
if O2; largest value used in
p
if O3; a1 � nc1 + a2 � nc2 + a3 � nc3 + a4 � nc4 +

+ b1 � nv1 + b2 � nv2 + b3 � nv3 + b4 � nv4

(15)

5. Benchmark

The CALMA benchmark results by algorithms devised within the CALMA
group were reported by Tiourine et al. in [36]. In this section, we
compare GGA's results with the CALMA algorithms (section 5.2.1).
Further, we will also evaluate the examine the value that GGA adds to
the canonical GLS (section 5.2.3).

5.1. Test Environment

In our physical environment, GGA was written in C++ and com-
plied using GNU GCC version 2.7.1.2. The code runs on an IBM PC
compatible with a Pentium 133 MHz processor, 32MB of RAM and
512KB of Level 2 cache. Both compilation and execution of GGA was
performed on the Linux operating system, using kernel version 2.0.27.
Under GGA's environment, we have a mutation rate and crossover
rate of 1.0, a population size of 20, and a stopping criterion of 100
generations. For the �tness function g, � has a value of 10.

5.2. Performance Evaluation

5.2.1. Comparing all Algorithms

In Table IV, we see the published results of all the CALMA algorithms,
GLS and GGA. Algorithms from the CALMA project groups consist
of either complete or stochastic methods. The results recorded in the
table are from the best solution each algorithm had generated. For
soluble instances (scen01, scen02, scen03, scen04, scen05 and scen11)6,
we report the number of frequencies above the known optimum that

6 Instance scen06 was found to be insoluble, and thus solved as an O3 problem.

kluwer~1.tex; 19/07/2000; 19:26; p.22

Guided Genetic Algorithm 23

each solution (generated by the respective algorithms) uses 7. Results
for the insoluble instances are reported as the percentage deviation from
the best known reported solution. When available, the average time
taken for each algorithm to arrive at these solutions are also reported
in the table.

For soluble instances, we observe that only seven out of the thirteen
algorithms8 were able to provide a solution to all the instances. Of the
six soluble instances, GGA failed to return an optimum solution only for
instance scen11. This instance has proved to be diÆcult for most of the
algorithms, since only three algorithms (Taboo Search (EUT), Branch
and Cut (DUT,EUT) and Constraint Satisfaction (LU)) were able to
return a solution on par with the best known. Only two algorithms
(Branch and Cut (DUT,EUT) and Constraint Satisfaction (LU) were
able to report solutions that gave the most optimal result. However,
these two algorithms were limited to solving soluble instances only.

Looking at insoluble instances, we see that eleven out of the fourteen
algorithms were able to tackle these PCSP instances. Of the eleven, nine
of these algorithms managed to provide a satisfactory solution to the
instances. Genetic Algorithms (LU) found the best known solutions
("in hours").

Overall, we see that top performers in each category (soluble and
insoluble) are limited (in application) to only that category; Branch
and Cut (DUT,EUT) and Constraint Satisfaction (LU) for soluble in-
stances, and Genetic Algorithms (LU) for insoluble instances. Of the
total of fourteen algorithms, ten were applicable to both categories.
Of these ten, only four algorithms were able to �nd solutions to all the
eleven instances. Of these four, Simulated Annealing (EUT) found good
solutions in all instances except in scen07, in which it found a solution
whose cost was 65% above the best known solution. Tabu Search (KCL)
found good solutions in the soluble problems, but poorer solutions in
insoluble instances, especially scen06, scen07 and scen08, in which it
found solutions whose costs were over 100% above the best known
cost. GLS and GGA found solutions whose costs were within 10% of
the best known costs in each of the eleven instances. In many cases, it
found solutions as good as the best known solutions. This shows the
consistency of GLS and GGA.

7 Since the preparation of this paper, new results have been reported. Voudouris
and Tsang limited the maximum number of penalties allowed in GLS (in a tabu-list
manner) and obtained better results [45].

8 The Genetic Algorithms from (LU) was designed for PCSP, and so it did not
attempt any of the soluble instances.

kluwer~1.tex; 19/07/2000; 19:26; p.23

24 T. L. Lau and E. P. K. Tsang

Table IV. Comparison of GGA with GLS and the CALMA project algo-
rithms.

Soluble Instances

Instance (scen) 01 02 03 04 05 11 Time Platform

Simulated Annealing (EUT) 2 0 2 0 0 2 1min SUN Sparc 4

Taboo Search (EUT) 2 0 2 0 - 0 5min SUN Sparc 4

Variable Depth Search (EUT) 2 0 2 0 - 10 6min SUN Sparc 4

Simulated Annealing (CERT) 4 0 0 0 - 10 41min SUN Sparc 10

Tabu Search (KCL) 2 0 0 0 0 2 40min DEC Alpha

Extended GENET (KCL) 0 0 0 0 0 2 2min DEC Alpha

Genetic Algorithms (UEA) 6 0 2 0 - 10 24min DEC Alpha

Genetic Algorithms (LU) - - - - - - - DEC Alpha

Partial Constr. Satisf. (CERT) 4 0 6 0 0 - 28min SUN Sparc 10

Potential Reduction (DUT) 0 0 2 0 0 - 3min HP 9000/72

Branch and Cut (DUT,EUT) 0 0 0 0 0 0 <10min -

Constraint Satisfaction (LU) 0 0 2 0 0 0 hours PC

Guided Local Search (UE) 0 0 0 0 0 6 20sec DEC Alpha

Guided Genetic Alg. (UE) 0 0 0 0 0 2 40min PC Linux

Best known solution 16 14 14 46 792 22

Results for the soluble instances are reported as the number of frequencies more than the

optimum used.

Insoluble Instances

Instance (scen) 06 07 08 09 10 Time

Simulated Annealing (EUT) 6% 65% 5% 0% 0% 310min

Taboo Search (EUT) - - - - - -

Variable Depth Search (EUT) 3% 0% 14% 0% 0% 85min

Simulated Annealing (CERT) 42% 1299% 70% 2% 0% 42min

Tabu Search (KCL) 167% 1804% 566% 8% 1% 111min

Extended GENET (KCL) 12% 27% 40% - - 20min

Genetic Algorithms (UEA) 0% 386% 134% 3% 0% 120min

Genetic Algorithms (LU) 0% 0% 0% 0% 0% hours

Partial Constr. Satisf. (CERT) 83% 2563% 246% 47% 12% 6min

Potential Reduction (DUT) 27% - - 4% 1% 10min

Branch and Cut (DUT,EUT) - - - - - -

Constraint Satisfaction (LU) - - - - - -

Guided Local Search (UE) 4% 9% 7% 0.7% 0.003% 2.88min

Guided Genetic Alg. (UE) 4% 9% 7% 0.7% 0.003% 60min

Best known solution 3437 343594 262 15571 31516

Results for the insoluble instances are reported as the percentage deviation from the best

known solution (in cost, according to the objective functions speci�ed in the problem).

The best known solutions were found empirically, hence not necessarily optimal.

CERT Centre d'Etudes et de Recherces de Toulouse, France

DUT Delft University of Technology, The Netherlands

EUT Eidhoven University of Technology, The Netherlands

KCL King's College London, United Kingdom

LU Limburg University, Maastricht, The Netherlands

UEA University of East Anglia, Norwich, United Kingdom

UE University of Essex, United Kingdom

kluwer~1.tex; 19/07/2000; 19:26; p.24

Guided Genetic Algorithm 25

5.2.2. Comparing Genetic Algorithms

Genetic Algorithms (UEA) [34], Genetic Algorithms (LU) [34] and
GGA are the three GAs reported here. Genetic Algorithms (UEA) are
a set of GAs based on the canonical GA but with specialized genetic
operators, and are able to tackle both soluble and insoluble instances.
The GGA performed better than Genetic Algorithms (UEA) in all but
two instances (scen06 and scen10). Note that GGA had a clear edge
over solutions from Genetic Algorithms (UEA) for instances scen01,
scen07, scen08 and scen11.

Genetic Algorithms (LU) has genetic operators that exploit domain
knowledge. This GA type algorithm has shown to be very e�ective for
insoluble instances of the CALMA benchmark, as it was able to return
solutions that are currently the best known. However, this achievement
comes at the price of expensive computation, as Genetic Algorithms
(LU) requires a large population size and long (hours of) processing
time (when compared to Genetic Algorithms (UEA) and GGA).

5.2.3. Comparing GGA and GLS

Evaluating an algorithm's potential should not be limited to just the
quality of the best solution it recommends. Besides solution quality and
computation speed, one other measure is robustness. Robustness of an
algorithm measures the consistency of the solutions it returns. In cer-
tain environments, one may need to be reasonably sure that the solution
returned by an algorithm is, or very near the optimum. Unfortunately,
we do not have any information on the robustness of the algorithms in
the CALMA project. Therefore, we compare the statistical results of
GGA and GLS.

For the comparison, GGA runs with a population of only �ve chro-
mosomes. This is the minimum number of chromosomes needed to
maintain an advantage over GLS, and the minimum population size to
achieve acceptable results. Increasing the population size will improve
robustness of GGA, but with diminishing signi�cance. We introduce a
variation of GLS, called GLS5 to compete with GGA on even grounds.
GLS5 is �ve GLS running concurrently of each other, each maintaining
its own candidate solution. Run time and iteration count for each GLS
thread within GLS5 has also been extended to meet with GGA's. That
is, each GLS thread in GLS5 has a limit of 100 iterations to match the
100 generations limit for GGA. At the end of each run, only the best
solution from GLS5 was used. The three algorithms (GGA, GLS and
GLS5) were each executed 50 times, for each of the eleven instances.

The results from Table V shows GGA to have better robustness than
GLS or GLS5 in soluble instances, and in the case of scen11, GGA had
reached a better solution. Also, GGA practically guarantees �nding

kluwer~1.tex; 19/07/2000; 19:26; p.25

26 T. L. Lau and E. P. K. Tsang

Table V. Comparing Robustness between GGA, GLS and GLS5.

Best Kn. Best Cost Average Cost Standard Deviation

Inst. Solution GLS GLS5 GGA GLS GLS5 GGA GLS GLS5 GGA

scen01 16 16 16 16 18.6 17.0 16.0 2.3 0.8 0.0

scen02 14 14 14 14 14.0 14.0 14.0 0.0 0.0 0.0

scen03 14 14 14 14 15.4 14.4 14.0 1.3 0.4 0.0

scen04 46 46 46 46 46.0 46.0 46.0 0.0 0.0 0.0

scen05 792 792 792 792 792.0 792.0 792.0 0.0 0.0 0.0

scen11� 22 28 26 22 - 33.9 30.2 - 3.1 1.7

scen06 3437 3575 3575 3575 4333.8 4129.6 4051.6 766.0 538.2 529.3

scen07 343594 374517 374517 374517 530641.1 510532.5 513044.8 79666.7 75149.4 75612.8

scen08 262 280 280 280 335.7 322.6 320.5 34.7 23.1 21.5

scen09 15571 15680 15680 15680 15999.7 15895.0 15889.6 194.7 112.6 109.3

scen10 31516 31517 31517 31517 31686.6 31631.4 31626.1 146.1 108.7 102.8

� For scen11, results for GLS could not be computed because it did not return a solution that sati�ed

all constraints for some runs.

the optimum solutions for soluble instances scen01, scen02, scen03,
scen04 and scen05. Results for insoluble instances are mixed, with both
algorithms having results very close to each other. But overall, GGA
achieved better average cost and smaller standard deviations for four
of the �ve insoluble instances (over GLS5).

In Table IV, we see that solution quality reported by GLS and GGA
were very much the same except in soluble instance scen11, where GGA
managed to better GLS's result. The amount of CPU time required for
computing these results have shown GLS to be much superior. However,
it is unfair to view GGA as just a parallel version of GLS. In section
3.3, we describe the mechanics of GGA. We have integrated GLS as
a component of GGA; i.e. as the penalty operator. The feedback from
the GLS is used at two levels within GGA. On one level, GLS modi�es
the objective (�tness) function of GGA to in
uence its search. On
another level, information from GLS is encoded into the template of
each chromosome, which rates the relative �tness of each gene in the
chromosome. The templates are used to in
uence the crossover and
mutation processes. However, since GGA manages several candidate
solutions at the same time, it will have a more complex means to detect
local optimum traps.

6. Conclusion

We have demonstrated how GLS, as a meta-heuristic, can be sat on
top of GA. We have designed a new meta-heuristic guided GA, which
we call GGA, for arresting the e�ect of high epistasis when GAs are

kluwer~1.tex; 19/07/2000; 19:26; p.26

Guided Genetic Algorithm 27

deployed to solve problems such as those from the CSP class. On the
other hand, the GA in GGA improves the robustness of GLS.

In this paper, we have explained how GGA could be applied to a
particular set of RLFAPs. In a set of extensively studied benchmarks,
we have shown that GGA adds value to the canonical GLS. And that
overall, GGA performed well against the other algorithms. It is worth
re-iterating that the set of benchmark problems cover a variety of needs
and has been tackled seriously by a number of prominent research
groups. GGA was able to produce results comparable to, and in many
cases better than, these other methods in all the benchmark instances.
This demonstrates the e�ectiveness and consistency of GGA.

The integration of GLS and the introduction of new elements to the
foundation of the canonical GA gave GGA a technique of approximat-
ing gene �tness for a chromosome, and the provision for multi-criteria
optimization. By knowing a gene's �tness within a chromosome, one
could understand the magnitude of its contribution to the overall �t-
ness. Gene �tness in
uence the e�ects that genetic operators have on
them, encouraging change to genes with low �tness, whilst protecting
the healthy ones.

For most applications where the users are more concerned with
turnaround time and less so on robustness, GLS is clearly the better
choice. But for mission critical applications, or applications where time
is not as tight, GGA o�ers robustness and may perform better than
GLS at times.

Acknowledgement

The authors would like to thank the anonymous referees for their thor-
ough and constructive comments. Chris Voudouris provided us with
valuable advice on this work. Tung Leng Lau was sponsored by the
University of Essex Studentship. Mathias Kern kindly helped us with
formatting.

References

1. Bethke, A.: 1978, `Genetic Algorithms as Function Optimizers'. Technical
Report 197, Logic of Computer Group, University of Michigan, USA.

2. Bowen, J. and G. Dozier: 1995, `Solving Constraint Satisfaction Problems us-
ing a Genetic/Systematic Search Hybrid that Realizes When to Quit'. In:
Proceedings, 6th International Conference on Genetic Algorithms. 122{129.

3. Cabon, B., S. de Givry, and G. Verfaille: 1996, `Anytime Lower Bounds for Con-
straint Violation Minimization Problems'. In: Proceedings, 4th International
Conference on Principles and Practice of Constraint Programming. 117{131.

kluwer~1.tex; 19/07/2000; 19:26; p.27

28 T. L. Lau and E. P. K. Tsang

4. Chalmers, A. and S. Gregory: 1993, `Constructing minimum path con�gura-
tions for multiprocessor systems'. Parallel Computing 19, 343{355.

5. Chu, P.: 1997, `Genetic Algorithms for Combinatorial Optimization Problems'.
Ph.D. thesis, The Management School, Imperial College, University of London,
UK.

6. Chu, P. and J. E. Beasley: 1996, `Genetic Algorithms for the Generalized
Assignment Problem'. Computers and Operations Research.

7. Chu, P. and J. E. Beasley: 1997, `Constraint handling in genetic algorithms: the
set partitioning problem'. Technical report, The Management School, Imperial
College, University of London, UK.

8. Davis, L.: 1991, Handbook of Genetic Algorithm. Von Nostrand Reinhold.
9. Dorne, R. and J. K. Hao: 1995, `An evolutionary approach for Frequency Allo-

cation Problem in cellular radio-networks'. In: IEEE International Conference
on Evolutionary Computing (ICEC'95).

10. Dorne, R. and J. K. Hao: 1996, `Constraint Handling in Evolutionary Search: A
Case Study of the Frequency Assignment'. In: Springer Verlag Lecture Notes in
Computer Science vol. 1141, Int. Conf. Parallel Problem Solving from Nature
(PPSN IV). 801{810.

11. Eiben, A., P.-E. Rau�e, and Z. Ruttkay: 1993, `Heuristic genetic algorithms for
constrained problems'. In: Proceedings of Dutch National AI Conference NAIC
'93. pp. 241{252.

12. Eiben, A., P.-E. Rau�e, and Z. Ruttkay: 1994, `Solving constraint satisfac-
tion problem using genetic algorithms'. In: Proceedings of 1st IEEE World
Conference on Computational Intelligence. 543{547.

13. Eiben, A., P.-E. Rau�e, and Z. Ruttkay: 1995, `GA-easy and ga-hard constraint
satisfaction problems'. In: Proceedings of the ECAI-94 workshop on Constraint
Processing. 267{284.

14. Freuder, E., R. Dechter, B. Selman, M. Ginsberg, and E. Tsang: 1995, `Sys-
tematic Versus Stochastic Constraint Satifaction'. In: Proceedings of 14th
International Joint Conference on Arti�cial Intelligence.

15. Freuder, E. and A. Mackworth: 1994, Constraints-based Reasoning. MIT Press.
16. Freuder, E. and R. Wallace: 1992, `Partial constraint satisfaction'. Arti�cial

Intelligence 58, 21{70.
17. Goldberg, D. E.: 1989, Genetic Algorithm in Search, Optimization and Machine

Learning. Addison-Wesley Pub. Co., Inc.
18. Hale, W. K.: 1980, `Frequency assignment: Theory and applications'. In:

Proceedings of the IEEE, Vol. 68. 1497{1514.
19. Hao, J. K. and R. Dorne: 1995, `Study of Genetic Search for the Frequency

Assignment Problem'. In: Springer Verlag Lecture Notes in Computer Science
vol. 1063 Arti�cial Evolution (AE'95), Brest, France.

20. Holland, J.: 1965, `Some practical aspects of Adaptive Systems Theory'.
Electronic Information Handling 209 { 217.

21. Kilby, P., P. Prosser and P. Shaw: 1997, `Guided local search for the vehi-
cle routing problem'. Proc., 2nd International Conference on Metaheuristics
(MIC97). Sophia-Antipolis, France, pp.21-24

22. Kumar: 1992, `Algorithms for Constraint Satisfaction Problems: A Survey'. AI
Magazine 13(1), 32{44.

23. Langley, P.: 1992, `Systematic and non-systematic search strategies'. In: Pro-
ceedings of Arti�cial Intelligence Planning Systems: Proceedings of the �rst
international conference. 145{152.

kluwer~1.tex; 19/07/2000; 19:26; p.28

Guided Genetic Algorithm 29

24. Lau, T. L.: 1998, `Guided Genetic Algorithm'. Ph.D. thesis, Department of
Computer Science, University of Essex, UK.

25. Lau, T. L. and E. P. K. Tsang: 1996, `Applying a mutation-based genetic
algorithm to the processor con�guration problem'. In: Proceedings of IEEE
8th International Conference on Tools with Arti�cial Intelligence. 17{24.

26. Lau, T. L. and E. P. K. Tsang: 1997, `Solving the processor con�guration
problem with a mutation-based genetic algorithm'. International Journal on
Arti�cial Intelligence Tools 6(4), 567{585.

27. Meseguer, P.: 1989, `Constraint Satisfaction Problems: An Overview'. AI
Communications 2(1), 3{17.

28. Mills, P. and E. P. K. Tsang: 2000, 'Guided local search for solving SAT and
weighted MAX-SAT problems'. Journal of Automatic Reasoning, Special Issue
on Satis�ability Problems. Kluwer, 24, 205-223.

29. Minton, S., M. Johnston, A. Philips, and P. Laird: 1992, `Minimizing con
icts:
A heuristic repair method for constraint satisfaction and scheduling problems'.
Arti�cial Intelligence 58, 161{205.

30. Ruttkay, Z., A. E. Eiben, and P. E. Raue: 1995, `Improving the Performance
of GAs on a GA-hard CSP'. In: Proceedings, CP95 Workshop on Studying and
Solving Really Hard Problems. 157{171.

31. Selman, B., H. Levesque, and D. Mitchell: 1992, `A New Method for Solving
Hard Satis�ability Problems'. In: Proceedings of 10th National Conference on
Arti�cial Intelligence. 440{446.

32. Smith, D. H. and S. Hurley: 1997, `Bounds for the Frequency Assignment
Problem'. Discrete Mathematics 167/168, 571{582.

33. Smith, D. H., S. Hurley, and S. U. Thiel: 1998, `Improving Heuristics For The
Frequency Assignment Problem'. European Journal of Operational Research
107, 76{86.

34. Smith, G. D., A. Kapsalis, V. J. Rayward-Smith, and A. Kolen: 1995, `Radio
link frequency assignment problem report 2.1 - Implementation and testing of
genetic algorithm approaches'. Technical report, School of Information Science,
University of East Anglia, UK.

35. Tam, V. and P. Stuckey: 1998, `An EÆcient Heuristic-based Evolutionary Al-
gorithm for Solving Constraint Satisfaction Problems'. In: Proceedings, 3rd
IEEE Symposium on Intelligence in Neural and Biological Systems (INBS).
21{23.

36. Tiourine, S., C. Hurkens, and J. Lenstra: 1995, `An overview of algorithmic
approaches to frequency assignment problems'. In: Proceedings of CALMA
Symposium, Scheveningen.

37. Tsang, E. P. K.: 1993, Foundations of Constraints Satisfaction. Academic Press
Limited.

38. Tsang, E. P. K. and C. Voudouris: 1997, `Fast local search and guided lo-
cal search and their application to British Telecom's workforce scheduling
problem'. Operations Research Letters 20(3), 119{127.

39. Verfaille, G., M. Lemaitre, and T. Schiex: 1996, `Russian Doll Search for Solving
Cosntraint Optimization Problems'. In: Proceedings, 13th National Conference
for Arti�cial Intelligence. 181{187.

40. Voudouris, C.: 1997, `Guided local search'. Ph.D. thesis, Department of
Computer Science, University of Essex, UK.

41. Voudouris, C.: 1998, `Guided Local Search { An Illustrative Example in
Function Optimization'. BT Technology Journal 46{50.

kluwer~1.tex; 19/07/2000; 19:26; p.29

30 T. L. Lau and E. P. K. Tsang

42. Voudouris, C. and E. P. K. Tsang: 1995, `Guided local search'. Technical
Report CSM-247, Department of Computer Science, University of Essex, UK.

43. Voudouris, C. and E. P. K. Tsang: 1996, `Partial constraint satisfaction prob-
lems and guided local search'. In: Proceedings of Practical Application of
Constraint Technology. 337{356.

44. Voudouris, C. and E. P. K. Tsang: 1998, `Guided local search and its application
to the travelling salesman problem'. European Journal of Operations Research
113(2), 80{110.

45. Voudouris, C. and E. P. K. Tsang: 1999, `Solving the Radio Link Frequency As-
signment Problem using Guided Local Search'. Frequency Assignment, Sharing
and Conservation Systems (Aerospace), Research and Technology Organization
(RTO) Meeting Proceedings 13, North Atlantic Treaty Organization (NATO),
14a-1-11

46. Warwick, T.: 1995, `A GA approach to constraint satisfaction problems'. Ph.D.
thesis, Department of Computer Science, University of Essex, UK.

47. Warwick, T. and E. P. K. Tsang: 1994, `Using a genetic algorithm to tackle
the processor con�guration problem'. In: Proceedings of Symposium on Applied
Computing. pp. 217{221.

48. Warwick, T. and E. P. K. Tsang: 1995, `Tackling car sequencing problems using
a generic genetic algorithm'. Evolutionary Computation 3(3), 267{298.

kluwer~1.tex; 19/07/2000; 19:26; p.30

